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Machine learning is used increasingly in clinical care to improve
diagnosis, treatment selection, and health system efficiency. Be-
cause machine-learning models learn from historically collected
data, populations that have experienced human and structural
biases in the past—called protected groups—are vulnerable to
harm by incorrect predictions or withholding of resources. This
article describes how model design, biases in data, and the in-
teractions of model predictions with clinicians and patients may
exacerbate health care disparities. Rather than simply guarding
against these harms passively, machine-learning systems should
be used proactively to advance health equity. For that goal to be
achieved, principles of distributive justice must be incorporated

into model design, deployment, and evaluation. The article de-
scribes several technical implementations of distributive justice—
specifically those that ensure equality in patient outcomes,
performance, and resource allocation—and guides clinicians
as to when they should prioritize each principle. Machine
learning is providing increasingly sophisticated decision sup-
port and population-level monitoring, and it should encode
principles of justice to ensure that models benefit all patients.
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Machine learning can identify the statistical patterns
of data generated by tens of thousands of physi-

cians and billions of patients to train computers to per-
form specific tasks with sometimes superhuman ability,
such as detecting diabetic eye disease better than retinal
specialists (1). However, historical data also capture pat-
terns of health care disparities, and machine-learning
models trained on these data may perpetuate these ineq-
uities. This concern is not just academic. In a model used
to predict future crime on the basis of historical arrest re-
cords, African American defendants who did not reoffend
were classified as high risk at a substantially higher rate
than white defendants who did not reoffend (2, 3). Similar
biases have been observed in predictive policing (4) and
identifying which calls to a child protective services agency
required an in-person investigation (5, 6). The implications
for health care led the American Medical Association to
pass policy recommendations to “promote development
of thoughtfully designed, high-quality, clinically validated
health care AI [artificial or augmented intelligence, such
as machine learning] that . . . identifies and takes steps to
address bias and avoids introducing or exacerbating
health care disparities including when testing or deploy-
ing new AI tools on vulnerable populations” (7).

We argue that health care organizations and poli-
cymakers should go beyond the American Medical As-
sociation's position of doing no harm and instead pro-
actively design and use machine-learning systems to
advance health equity. Whereas much health dispari-
ties work has focused on discriminatory decision mak-
ing and implicit biases by clinicians, policymakers, or-
ganizational leaders, and researchers are increasingly
focusing on the ill health effects of structural racism and
classism—how systems are shaped in ways that harm
the health of disempowered, marginalized populations
(8). For example, the United States has a shameful his-
tory of purposive decisions by government and private
businesses to segregate housing. Zoning laws, discrim-
ination in mortgage lending, prejudicial practices by
real estate agents, and the ghettoization of public
housing all contributed to the concentration of urban
African Americans in inferior housing that has led to

poor health (9, 10). Even when the goal of decision
makers is not outright discrimination against disadvan-
taged groups, actions may lead to inequities. For exam-
ple, if the goal of a machine-learning system is to max-
imize efficiency, that might come at the expense of
disadvantaged populations.

As a society, we value health equity. For example,
the Healthy People 2020 vision statement aims for “a
society in which all people live long, healthy lives,” and
one of the mission's goals is to “achieve health equity,
eliminate disparities, and improve the health of all
groups” (11). The 4 classic principles of Western clinical
medical ethics are justice, autonomy, beneficence, and
nonmaleficence. However, health equity will not be at-
tained unless we purposely design our health and so-
cial systems, which increasingly will be infused with ma-
chine learning (12), to achieve this goal.

To ensure fairness in machine learning, we recom-
mend a participatory process that involves key stake-
holders, including frequently marginalized populations,
and considers distributive justice within specific clinical
and organizational contexts. Different technical ap-
proaches can configure the mathematical properties of
machine-learning models to render predictions that are
equitable in various ways. The existence of mathemati-
cal levers must be supplemented with criteria for when
and why they should be used—each tool comes with
tradeoffs that require ethical reasoning to decide what
is best for a given application.

We propose incorporating fairness into the design,
deployment, and evaluation of machine-learning mod-
els. We discuss 2 clinical applications in which machine
learning might harm protected groups by being inac-
curate, diverting resources, or worsening outcomes, es-
pecially if the models are built without consideration for
these patients. We then describe the mechanisms by
which a model's design, data, and deployment may
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lead to disparities; explain how different approaches to
distributive justice in machine learning can advance
health equity; and explore what contexts are more ap-
propriate for different equity approaches in machine
learning.

CASE STUDY 1: INTENSIVE CARE UNIT

MONITORING
A common area of predictive modeling research

focuses on creating a monitoring system—for example,
to warn a rapid response team about inpatients at high
risk for deterioration (13–15), requiring their transfer to
an intensive care unit within 6 hours. How might such a
system inadvertently result in harm to a protected
group? In this thought experiment, we consider African
Americans as a protected group.

To build the model, our hypothetical researchers
collected historical records of patients who had clinical
deterioration and those who did not. The model acts
like a “diagnostic test” of risk for intensive care unit
transfer. However, if too few African American patients
were included in the training data—the data used to
construct the model—the model might be inaccurate for
them. For example, it might have a lower sensitivity and
miss more patients at risk for deterioration. African
American patients might be harmed if clinical teams
started relying on alerts to identify at-risk patients with-
out realizing that the prediction system underdetects
patients in that group (automation bias) (16). If the
model had a lower positive predictive value for African
Americans, it might also disproportionately harm them
through dismissal bias—a generalization of alert fatigue
in which clinicians may learn to discount or “dismiss”
alerts for African Americans because they are more
likely to be false-positive (17).

CASE STUDY 2: REDUCING LENGTH OF STAY
Imagine that a hospital created a model with clini-

cal and social variables to predict which inpatients
might be discharged earliest so that it could direct lim-
ited case management resources to them to prevent
delays. If residence in ZIP codes of socioeconomically
depressed or predominantly African American neigh-
borhoods predicted greater lengths of stay (18), this
model might disproportionately allocate case manage-
ment resources to patients from richer, predominantly
white neighborhoods and away from African Americans
in poorer ones.

WHAT IS MACHINE LEARNING?
Traditionally, computer systems map inputs to out-

puts according to manually specified “if–then” rules.
With increasingly complex tasks, such as language
translation, manually specifying rules becomes infeasi-
ble, and instead the mapping (or model) is learned by
the system given only input examples represented
through a set of features together with their desired
output, referred to as labels.

The quality of a model is assessed by computing
evaluation metrics on data not used to build the model,
such as sensitivity, specificity, or the c-statistic, which
measures the ability of a model to distinguish patients
with a condition from those without it (19, 20). Once the
model's quality is deemed satisfactory, it can be de-
ployed to make predictions on new examples for which
the label is unknown when the prediction is made. The
quality of the models on retrospective data must be
followed with tests of clinical effectiveness, safety, and
comparison with current practice, which may require
clinical trials (21).

Traditionally, statistical models for prediction, such as
the pooled-cohort equation (22), have used few variables
to predict clinical outcomes, such as cardiovascular risk
(23). Modern machine-learning techniques, however, can
consider many more features. For example, a recent
model to predict hospital readmissions examined hun-
dreds of thousands of pieces of information, including the
free text of clinical notes (24). Complex data and models
can drive more personalized and accurate predictions but
may also make algorithms hard to understand and trust
(25).

WHAT CAN CAUSE A MACHINE-LEARNING

SYSTEM TO BE UNFAIR?
The Glossary lists key biases in the design, data,

and deployment of a machine-learning model that may
perpetuate or exacerbate health care disparities if left
unchecked. The Figure reveals how the various biases
relate to one another and how the interactions of
model predictions with clinicians and patients may ex-
acerbate health care disparities. Biases may arise dur-
ing the design of a model. For example, if the label is
marred by health care disparities, such as predicting
the onset of clinical depression in environments where
protected groups have been systematically misdiag-
nosed, then the model will learn to perpetuate this dis-
parity. This represents a generalization of test-referral
bias (26) that we refer to as label bias. Moreover, the
data on which the model is developed may be biased.
Data on patients in the protected group might be dis-
tributed differently from those in the nonprotected
group because of biological or nonbiological variation
(9, 27). For example, the data may not contain enough
examples from a group to properly tailor the predic-
tions to them (minority bias) (28), or the data set of the
protected group may be less informative because fea-
tures are missing not at random as a result of more
fragmented care (29, 30).

The immediate effect of these differences is that
the model may not be as accurate for patients in the
protected class, but the effects on patient outcomes
and resource allocation are usually mediated through
how clinicians and administrators interact with the
model. For example, do clinicians trust the model even
when it is wrong (automation bias) or ignore it when
they should not (dismissal bias)? Will administrators use
a flawed model to determine which patients are at high
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risk for poor outcomes and who should then receive
more assistance?

Patients in the protected group may also be nega-
tively affected by privilege bias if models are not built
for diseases that disproportionately affect them or if
models are disproportionately deployed to areas where
they do not seek care (for example, concierge practice vs.
safety-net clinic) (31). They also may be affected by in-

formed mistrust if protected groups distrust using models
for their own care (32).

DISTRIBUTIVE JUSTICE OPTIONS IN

MACHINE LEARNING
What can be done to mitigate the biases that make

a model unfair? We propose using 3 central axes in-
spired by principles of distributive justice to under-
stand fairness in machine learning.

Equal Outcomes
Equal patient outcomes refers to the assurance that

protected groups have equal benefit in terms of patient
outcomes from the deployment of machine-learning
models (33). A weak form of equal outcomes is ensur-
ing that both the protected and nonprotected groups
benefit similarly from a model (equal benefit); a stron-
ger form is making sure that both groups benefit and any
outcome disparity is lessened (equalized outcomes). En-
suring equal outcomes is the most critical aspect of fair-
ness and can be advanced by interventions proactively
designed to reduce disparities (34, 35). It may be hard to
know in advance, though, if any well-intentioned general,
nontailored intervention, whether a quality improvement
project or a machine-learning system, might dispropor-
tionately harm or benefit a protected group. However,
besides equal outcomes, other options that might ad-
vance health equity can be analyzed and addressed pro-
spectively.

Equal Performance
If a model systematically makes errors dispropor-

tionately for patients in the protected group, it is likely
to lead to unequal outcomes. Equal performance refers
to the assurance that a model is equally accurate for
patients in the protected and nonprotected groups. Equal
performance has 3 commonly discussed types: equal sen-
sitivity (also known as equal opportunity [36]), equal sen-
sitivity and specificity (also known as equalized odds), and
equal positive predictive value (commonly referred to as
predictive parity [37]). Not only can these metrics be cal-
culated, but techniques exist to force models to have one
of these properties (36, 38–41).

When should each type of equal performance be
considered? A higher false-negative rate in the pro-
tected group in case 1 would mean African American
patients were missing the opportunity to be identified;
in this case, equal sensitivity is desirable. A higher false-
positive rate might be especially deleterious by leading
to potentially harmful interventions (such as unneces-
sary biopsies), motivating equal specificity. When the
positive predictive value for alerts in the protected
group is lower than in the nonprotected groups, clini-
cians may learn that the alerts are less informative for
them and act on them less (a situation known as class-
specific alert fatigue). Ensuring equal positive predic-
tive value is desirable in this case.

Equal performance, however, may not necessarily
translate to equal outcomes. First, the recommended
treatment informed by the prediction may be less effec-
tive for patients in the protected group (for example,

Glossary

Biases in model design
Label bias: A label that does not mean the same thing for all patients

because it is an imperfect proxy that is subject to health care
disparities rather than an adjudicated truth. This is a generalization of
test-referral and test-interpretation bias in the statistics literature.

Cohort bias: Defaulting to traditional or easily measured groups
without considering other potentially protected groups or levels of
granularity (e.g., whether sex is recorded as male, female, or other or
more granular categories).

Biases in training data
Minority bias: The protected group may have insufficient numbers of

patients for a model to learn the correct statistical patterns.
Missing data bias: Data may be missing for protected groups in a

nonrandom fashion, which makes an accurate prediction hard to
render (e.g., a model may underdetect clinical deterioration in
patients under contact isolation because they have fewer vital signs).

Informativeness bias: Features may be less informative to render a
prediction in a protected group (e.g., identifying melanoma from an
image of a patient with dark skin may be more difficult).

Training–serving skew: The model may be deployed on patients whose
data are not similar to the data on which the model was trained. The
training data may not be representative (i.e., selection bias), or the
deployment data may differ from the training data (e.g., a lack of
unified methods for data collection or not recording data with
standardized schemas).

Biases in interactions with clinicians
Automation bias: If clinicians are unaware that a model is less accurate

for a specific group, they may trust it too much and inappropriately
act on inaccurate predictions.

Feedback loops: If the clinician accepts the recommendation of a
model even when it is incorrect to do so, the model's recommended
versus administered treatments will always match. The next time the
model is trained, it will learn to continue these mistakes.

Dismissal bias: Conscious or unconscious desensitization to alerts that
are systematically incorrect for a protected group (e.g., an early-
warning score for patients with sepsis). Alert fatigue is a form of this.

Allocation discrepancy: If the protected group has disproportionately
fewer positive predictions, then resources allocated by the
predictions (e.g., extra clinical attention or social services) are
withheld from that group.

Biases in interactions with patients
Privilege bias: Models may be unavailable in settings where protected

groups receive care or require technology/sensors
disproportionately available to the nonprotected class.

Informed mistrust: Given historical exploitation and unethical practices,
protected groups may believe that a model is biased against them.
These patients may avoid seeking care from clinicians or systems
that use the model or deliberately omit information. The protected
group may be harmed by not receiving appropriate care.

Agency bias: Protected groups may not have input into the
development, use, and evaluation of models. They may not have the
resources, education, or political influence to detect biases, protest,
and force correction.

Distributive justice options for machine learning
Equal patient outcomes: The model should lead to equal patient

outcomes across groups.
Equal performance: The model performs equally well across groups for

such metrics as accuracy, sensitivity, specificity, and positive
predictive value.

Equal allocation: Allocation of resources as decided by the model is
equal across groups, possibly after controlling for all relevant factors.
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because of different responses to medications and a
lack of research on heterogeneous treatment effects
[42]). Second, even if a model is inaccurate for a group,
clinicians might compensate with additional vigilance,
overcoming the model's deficiencies.

Third, forcing a model's predictions to have one of
the equal performance characteristics may have unex-
pected consequences. In case 1, ensuring that a model
will detect African American and non–African American
patients at equal rates (equal sensitivity) could be
straightforwardly accomplished by lowering the thresh-
old for the protected class to receive the intervention.
This simultaneously increases the false-positive rate for
this group, manifesting as more false alarms and sub-
sequent class-specific alert fatigue. Likewise, equalized
odds can be achieved by lowering accuracy for the
nonprotected group, which undermines the principle
of beneficence.

Equal Allocation
Predictions are often used to allocate resources,

such as in case 2, in which some patients are given
additional case management. The third type of equity is
equal allocation (also known as demographic parity
[43]), which ensures that the resources are proportion-
ately allocated to patients in the protected group. Be-
cause the comorbidity distribution may differ across
groups, the desired allocation might first be adjusted
for relevant variables (44). This is distinct from equal
performance, because allocation is determined by the
rate of positive predictions (such as predictions above a
threshold) without regard to their accuracy.

In some cases, judging accuracy is misleading
when labels have historical bias, explaining why equal
allocation may be preferable. Consider a model to
identify which patients presenting emergently with
chest pain should automatically activate a cardiac cath-
eterization team. If African American women were his-
torically sent for this procedure at inappropriately low
rates compared with white men (45), then “correct” pre-
dictions (based on historical data) would underidentify
these women. Equal allocation could be used to lower
the threshold for African American women so that the
catheterization laboratory would be activated at equal
rates across groups, thereby correcting for past bias.
This may not necessarily translate to equal outcomes if
it leads to a higher rate of false-positive activations of
the laboratory with respect to actual clinical need or to
a continuation of lower true-positive rates if clinicians
dismiss the predictions because of the underlying bias
against recommending the procedure for women.
Whether the net effect of the model is a reduction in
health care disparities, especially compared with not
implementing a model, is uncertain.

Tradeoffs
The computer science community was rocked

when a machine-learning model used to help predict
which criminal defendants were at risk for committing a
future crime was found to be unfair with respect to
equalized odds: African American defendants who did
not reoffend were classified as high risk at a substan-
tially higher rate than white defendants who did not
reoffend. The model builders, however, asserted that

Figure. Conceptual framework of how various biases relate to one another.
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During model development, differences in the distribution of features used to predict a label between the protected and nonprotected groups may
bias a model to be less accurate for protected groups. Moreover, the data used to develop a model may not generalize to the data used during
model deployment (training–serving skew). Biases in model design and data affect patient outcomes through the model's interaction with clinicians
and patients.
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the model had equal positive and negative predictive
value across the groups (46). Subsequent analysis re-
vealed that various types of fairness are sometimes in-
compatible: A model may be fair with respect to equal
positive and negative predictive value but unfair with
respect to equalized odds (or vice versa), but it is im-
possible for any model to satisfy both. This impossibility
also holds for equalized odds and equal allocation, and
for equal allocation and equal positive and negative
predictive value (37). Machine-learning fairness is not
just for machine-learning specialists to understand; it
requires clinical and ethical reasoning to determine
which type of fairness is appropriate for a given appli-
cation and what level of it is satisfactory. Although no
cookie-cutter solution exists, the examples and recom-
mendations provide a starting point for this reasoning.
We believe that in practice, satisfactory levels of the
desired fairness types can be achieved.

RECOMMENDATIONS
In the Table, we present recommendations for how

to incorporate fairness into machine learning. Research-
ers should consider how prior health care disparities may
affect the design and data of a model. For example, if
advanced-stage melanoma is diagnosed more frequently
in patients with dark skin than in other groups, might a

skin cancer detection model fail to detect early-stage dis-
ease in patients with dark skin (47, 48)? During training
and evaluation, researchers should measure any devia-
tions from equal accuracy and equal allocation, and con-
sider mitigating them by using techniques during training
(38–40) or by postprocessing a trained model (30, 36,
41). Before deployment, launch reviews should formally
assess model performance and allocation of resources
across groups. The reviews should determine whether a
model promotes equal outcomes, broadly defined as
“the patient's care experience, functional status, and qual-
ity of life, as well as . . . personalization of care and re-
source stewardship” (49). If a model is deployed, the per-
formance of the model and outcome measurements
should be monitored, possibly through formal trial design
(such as stepped-wedge trials [50]). Moreover, the model
may be improved over time by collecting more represen-
tative or less biased data.

We purposefully do not recommend the commonly
discussed fairness principle of “unawareness,” which
states that a model should not use the membership of
the group as a feature. Complex models can infer a
protected attribute even if it is not explicitly coded in a
data set, such as a model identifying a patient's self-
reported sex from a retinal image even though ophthal-
mologists cannot (51). Moreover, removing features
may lead to poorer performance for all patients.

CONCLUSIONS
Consideration of fairness in machine learning al-

lows us to reexamine historical bias and proactively
promote a more equitable future. We are optimistic
that machine learning can substantially improve the
care delivered to patients if it is thoughtfully designed
and deployed. Case 2 is based on a University of Chi-
cago Medicine example in which data scientists from
the Center for Healthcare Delivery Science and Innova-
tion collaborated with experts from the Diversity and
Equity Committee to identify the equity problem and to
design a local checklist for model building and deploy-
ment that advances equity.

Machine-learning fairness is not just about prevent-
ing a model from harming a protected group; it may
also help focus care where it is really needed. Models
could be used to provide translation services where in-
person interpreters are scarce, provide medical exper-
tise in areas with a limited number of specialists, and
even improve diagnostic accuracy for rare conditions
that are often misdiagnosed. By including fairness as a
central consideration in how the models are designed,
deployed, and evaluated, we can ensure that all pa-
tients benefit from this technology.
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Table. Recommendations

Design
Determine the goal of a machine-learning model and review it with

diverse stakeholders, including protected groups.
Ensure that the model is related to the desired patient outcome and

can be integrated into clinical workflows.
Discuss ethical concerns of how the model could be used.
Decide what groups to classify as protected.
Study whether the historical data are affected by health care disparities

that could lead to label bias. If so, investigate alternative labels.

Data collection
Collect and document training data to build a machine-learning

model.
Ensure that patients in the protected group can be identified (weighing

cohort bias against privacy concerns).
Assess whether the protected group is represented adequately in

terms of numbers and features.

Training
Train a model taking into account the fairness goals.

Evaluation
Measure important metrics and allocation across groups.
Compare deployment data with training data to ensure comparability.
Assess the usefulness of predictions to clinicians initially without

affecting patients.

Launch review
Evaluate whether a model should be launched with all stakeholders,

including representatives from the protected group.

Monitored deployment
Systematically monitor data and important metrics throughout

deployment.
Gradually launch and continuously evaluate metrics with automated

alerts.
Consider a formal clinical trial design to assess patient outcomes.
Periodically collect feedback from clinicians and patients.
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